Appendix 6: Safety of Flight

General

Safety of flight must be the prime consideration at all times. The evaluator, applicant, and crew must be constantly alert for other traffic. If performing aspects of a given maneuver, such as emergency procedures, would jeopardize safety, the evaluator will ask the applicant to simulate that portion of the maneuver. The evaluator will assess the applicant's use of visual scanning and collision avoidance procedures throughout the entire test.

Stall and Spin Awareness

During flight training and testing, the applicant and the instructor or evaluator must always recognize and avoid operations that could lead to an inadvertent stall or spin and inadvertent loss of control.

Use of Checklists

Throughout the practical test, the applicant is evaluated on the use of an appropriate checklist.

Assessing proper checklist use depends upon the specific Task. In all cases, the evaluator should determine whether the applicant appropriately divides attention and uses proper visual scanning. In some situations, reading the actual checklist may be impractical or unsafe. In such cases, the evaluator should assess the applicant's performance of published or recommended immediate action "memory" items along with his or her review of the appropriate checklist once conditions permit.

In a single-pilot airplane, the applicant should demonstrate the crew resource management (CRM) principles described as single-pilot resource management (SRM). Proper use is dependent on the specific Task being evaluated. The situation may be such that the use of the checklist while accomplishing elements of an Objective would be either unsafe or impractical in a single-pilot operation. In this case, a review of the checklist after the elements have been accomplished is appropriate.

Use of Distractions

Numerous studies indicate that many accidents have occurred when the pilot has been distracted during critical phases of flight. The evaluator should incorporate realistic distractions during the flight portion of the practical test to evaluate the pilot's situational awareness and ability to utilize proper control technique while dividing attention both inside and outside the cockpit.

Positive Exchange of Flight Controls

There must always be a clear understanding of who has control of the aircraft. Prior to flight, the pilots involved should conduct a briefing that includes reviewing the procedures for exchanging flight controls.

The FAA recommends a positive three-step process for exchanging flight controls between pilots:

- When one pilot seeks to have the other pilot take control of the aircraft, he or she will say, "You have the flight controls."
- The second pilot acknowledges immediately by saying, "I have the flight controls."
- The first pilot again says, "You have the flight controls," and visually confirms the exchange.

Pilots should follow this procedure during any exchange of flight controls, including any occurrence during the practical test. The FAA also recommends that both pilots use a visual check to verify that the exchange has occurred. There must never be any doubt as to who is flying the aircraft.

Aeronautical Decision-Making, Risk Management, Crew Resource Management and Single-Pilot Resource Management

Throughout the practical test, the evaluator must assess the applicant's ability to use sound aeronautical decision-making procedures in order to identify hazards and mitigate risk. The evaluator must accomplish this requirement by reference to the risk management elements of the given Task(s), and by developing scenarios that incorporate and combine Tasks appropriate to assessing the applicant's risk management in making safe aeronautical decisions. For example, the evaluator may develop a scenario that incorporates weather decisions and performance planning.

In assessing the applicant's performance, the evaluator should take note of the applicant's use of CRM and, if appropriate, SRM. CRM/SRM is the set of competencies that includes situational awareness, communication skills, teamwork, task allocation, and decision-making within a comprehensive framework of standard operating procedures (SOP). SRM specifically refers to the management of all resources onboard the aircraft as well as outside resources available to the single pilot.

Deficiencies in CRM/SRM almost always contribute to the unsatisfactory performance of a Task. While evaluation of CRM/SRM may appear to be somewhat subjective, the evaluator should use the risk management elements of the given Task(s) to determine whether the applicant's performance of the Task(s) demonstrates both understanding and application of the associated risk management elements.

Multiengine Considerations

On multiengine practical tests, where the failure of the most critical engine after liftoff is required, the evaluator must consider local atmospheric conditions, terrain, and type of aircraft used. The evaluator must not simulate failure of an engine until attaining at least V_{SSE}/V_{YSE} and an altitude not lower than 400 feet AGL.

The applicant must supply an airplane that does not prohibit the demonstration of feathering the propeller in flight. However, an applicant holding an unrestricted AMEL rating may take a practical test for the addition of an AMES rating in an AMES without propeller feathering capability. Practical tests conducted in a flight simulation training device (FSTD) can only be accomplished as part of an approved curriculum or training program. Any limitations or powerplant failure will be noted in that program.

For safety reasons, when the practical test is conducted in an airplane, the applicant must perform Tasks that require feathering or shutdown only under conditions and at a position and altitude where it is possible to make a safe landing on an established airport if there is difficulty in unfeathering the propeller or restarting the engine. The evaluator must select an entry altitude that will allow the single-engine demonstration Tasks to be completed no lower than 3,000 feet AGL or the manufacturer's recommended altitude (whichever is higher). If it is not possible to unfeather the propeller or restart the engine while airborne, the applicant and the evaluator should treat the situation as an emergency. At altitudes lower than 3,000 feet AGL, engine failure should be simulated by reducing throttle to idle and then establishing zero thrust.

Engine failure (simulated) during takeoff should be accomplished prior to reaching 50 percent of the calculated V_{MC} .

Single-Engine Considerations

For safety reasons, the evaluator will not request a simulated powerplant failure in a single-engine airplane unless it is possible to safely complete a landing.

High-Performance Airplane Considerations

In some high-performance airplanes, the power setting may have to be reduced below the ACS guidelines power setting to prevent excessively high pitch attitudes greater than 30° nose up.